SENTIMENT ANALYSIS ABOUT INDONESIAN PEOPLE'S AWARENESS ABOUT CYBER SECURITY IN DETERMINING DATA LEAKAGE USING NAÏVE BAYES CLASSIFIER ALGORITHM

Main Article Content

Dinna Nurfadlillah

Abstract

Leakage of personal data is a serious challenge, the adverse effects of incidents of data leakage can result in fines, loss of reputation and public trust that has been harmed. Cyber security plays a role in minimizing the level of risk of cyberattack threats that disrupt the security of all system components such as infrastructure, software, hardware and data. This research was conducted to analyze the sentiments of the Indonesian people towards the queries "cyber security" and "data leaks" from Twitter user tweets. The data classification in this study uses the Naïve Bayes Classifier algorithm method. The purpose of this study is to determine the percentage performance of positive and negative sentiments. The results of the modeling performance are obtaining accuracy percentage values of 88.80%, Precision 29.27%, and Recall 30.77%. The results of the data visualization show that Indonesian people, especially Twitter users, give many negative opinions in response to this discussion. So the percentage of negative sentiment is higher than positive sentiment.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nurfadlillah, D. (2023). SENTIMENT ANALYSIS ABOUT INDONESIAN PEOPLE’S AWARENESS ABOUT CYBER SECURITY IN DETERMINING DATA LEAKAGE USING NAÏVE BAYES CLASSIFIER ALGORITHM. Electro Luceat, 9(1), 64 - 72. https://doi.org/10.32531/jelekn.v9i1.598
Section
Articles

References

[1] R. Sholehurrohman and I. Sabda Ilman, “Analisis Sentimen Tweet Kasus Kebocoran Data Penggunaan Facebook Oleh Cambrigde Analytica,” J. Pepadun, vol. 3, no. 1, pp. 140–147, 2022, doi: 10.23960/pepadun.v3i1.108.
[2] M. R. T. R. Herryani and H. Njoto, “Perlindungan Hukum Terhadap Kebocoran Data Pribadi Konsumen Online Marketace,” Transparansi Huk., vol. 5, no. 1, pp. 110–133, 2022, [Online]. Available: http://ojs.unik-kediri.ac.id/index.php/transparansihukum/article/view/2274.
[3] Djaenab and B. HB, “Tinjauan Yuridis Perlindungan Data Pribadi Terkait Kebocoran Data Dalam Ruang Cyber Crime,” vol. 10, no. April, pp. 70–76, 2022.
[4] N. I. Wibowo, T. A. Maulana, H. Muhammad, and N. A. Rakhmawati, “Perbandingan Algoritma Klasifikasi Sentimen Twitter Terhadap Insiden Kebocoran Data Tokopedia,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 2, pp. 120–129, 2021, doi:
10.14421/jiska.2021.6.2.120-129.
[5] N. Fitrianti, I. Marina, S. S. Qadrifa, P. Pascasarjana, I. Komunikasi, and I. Komunikasi, “Integrated Marketing Communication in E-commerce (a Study Case of Customers Data Leakage in Tokopedia),” J. Interak. J. Ilmu Komun., vol. 6, no. 1, pp. 83–92, 2022, doi:
10.30596/interaksi.v6i1.8226.
[6] Kompas, “Kilas Balik, Lima Kasus Kebocoran Data Pribadi di Indonesia...,” Kompas.com, 2022.https://www.kompas.com/cekfakta/read/2022/09/06/171100182/kilas-balik-limakasus-kebocoran-data-pribadi-di-indonesia-.
[7] H. B. Setiawan, & Fatma, and U. Najicha, “Perlindungan Data Pribadi Warga Negara Indonesia Terkait Dengan Kebocoran Data,” J. Kewarganegaraan, vol. 6, no. 1, pp. 976–982, 2022.
[8] R. N. Rohmah, “Cendekia Niaga Journal of Trade Development and Studies Upaya Membangun Kesadaran Keamanan Siber pada Konsumen E-commerce di Indonesia Ratri Nur Rohmah Abstrak,” 2022.
[9] T. Tan and B. Soewito, “Menggunakan Framework Nist Cybersecurity Di Universitas Zxc,” vol. 6, no. 2, pp. 411–422, 2022, doi: 10.52362/jisamar.v6i2.781.
[10] A. N. Aini and E. Wahyudi, “Model Perilaku Keamanan Siber Pada Pengguna Sosial Media Pada Masa Pandemi Covid-19,” vol. 9, no. 1, pp. 37–40, 2022.
[11] F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” 2018.
[12] L. D. Utami, “Integrasi Metode Information Gain Untuk Seleksi Fitur dan Adaboost Untuk Mengurangi Bias Pada Analisis Sentimen Review Restoran Menggunakan Algoritma Naïve
Bayes,” vol. 1, no. 2, pp. 120–126, 2015.
[13] A. Rozaq, Y. Yunitasari, K. Sussolaikah, E. Resty, N. Sari, and R. I. Syahputra, “Analisis Sentimen Terhadap Implementasi Program Merdeka Belajar Kampus Merdeka Menggunakan
Naïve Bayes , K-Nearest Neighboars Dan Decision Tree,” vol. 6, no. April, pp. 746–750, 2022, doi: 10.30865/mib.v6i2.3554.
[14] F. Yahyadi, Adi; Latifah, “Analisis Sentimen Twitter Terhadap Kebijakan Ppkm Di Tengah
Pandemi Covid-19,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 6, no. 2, pp. 464–471, 2022, doi: 10.52362/jisamar.v6i2.791.
[15] T. Wiratama Putra, A. Triayudi, and A. Andrianingsih, “Analisis Sentimen Pembelajaran Daring Menggunakan Metode Naïve Bayes, KNN, dan Decision Tree,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 20–26, 2022, doi: 10.35870/jtik.v6i1.368.
[16] R. Rudini, “Peranan Statistika Dalam Penelitian Sosial Kuantitatif,” J. SAINTEKOM, vol. 6, no. 2, p. 53, 2017, doi: 10.33020/saintekom.v6i2.13.
[17] A. Muhson, “Teknik Analisis Kuantitatif 1 TEKNIK ANALISIS KUANTITATIF,” 2006.
[18] A. Dewandaru and J. S. Wibowo, “Jurnal Teknologi dan Manajemen Informatika Analisis Sentimen dan Klasifikasi Tweet Terkait Mutasi COVID-19 Menggunakan Metode Naïve Bayes Classifier,” vol. 8, no. 1, pp. 32–38, 2022.
[19] A. Dewandaru and J. S. Wibowo, “Jurnal Teknologi dan Manajemen Informatika Analisis Sentimen dan Klasifikasi Tweet Terkait Mutasi COVID-19 Menggunakan Metode Naïve Bayes Classifier,” vol. 8, no. 1, pp. 32–38, 2022.
[20] R. Indra Borman and M. Wati, “Penerapan Data Maining Dalam Klasifikasi Data Anggota Kopdit Sejahtera Bandarlampung Dengan Algoritma Naïve Bayes,” J. Ilm. Fak. Ilmu Komput., vol. 09, no. 01, pp. 25–34, 2020.
Abstract viewed = 36 times
PDF (Bahasa Indonesia) downloaded = 49 times