Implementasi Algoritma Deep Learning untuk Analisis Sentimen Pengguna Platform Pendidikan

Main Article Content

Anjis Sapto Nugroho
Eko Prasetyo
Adhi Priyanto
Daniel Alfa Puryono

Abstract

More than 3.5 million Indonesian educators had used the Merdeka Mengajar Platform by 2024. Comparing this figure to the 3.37 million from the previous academic year, there has been an increase of almost 3.85%. However, an investigation is required to determine the reasons why the application's use has not yet achieved the anticipated goal number of users. This study does sentiment analysis on evaluations of the Merdeka Mengajar platform using Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM). The benefits of RNN and LSTM in processing sequential data, especially in text processing for sentiment analysis, led to their selection. The purpose of this study is to solve the difficulties in determining if users' sentiments on the platform are favorable or negative. Important steps in the research technique include preprocessing, data cleaning, and employing FastText embedding to convert text into numerical vectors. Then, using patterns in the text data, RNN and LSTM models are used to forecast sentiment. The study's findings demonstrate that the LSTM model can, with an estimated accuracy of 93.58%, identify long-term associations in sequential data. The RNN model, on the other hand, produces a lesser accuracy of 91.70%. Particularly in text data with intricate temporal circumstances, the LSTM model performs better at accurately classifying sentiment. By better understanding customer opinions and input on the Merdeka Mengajar platform, this study helps platform developers improve the quality of their services.

Article Details

How to Cite
Nugroho, A., Prasetyo, E., Priyanto, A., & Puryono, D. (1). Implementasi Algoritma Deep Learning untuk Analisis Sentimen Pengguna Platform Pendidikan. SOSCIED, 8(2), 482-496. https://doi.org/10.32531/jsoscied.v8i2.999
Section
Articles

References

M. G. Maru, F. P. Tamowangkay, N. Pelenkahu, and C. Wuntu, ‘Teachers’ perception toward the impact of platform used in online learning communication in the eastern Indonesia’, Int. J. Commun. Soc., vol. 4, no. 1, pp. 59–71, 2021, doi: 10.31763/ijcs.v4i1.321.

W. Ndari, Suyatno, Sukirman, and F. N. Mahmudah, ‘Implementation of the Merdeka Curriculum and Its Challenges’, Eur. J. Educ. Pedagog., vol. 4, no. 3, pp. 111–116, 2023, doi: 10.24018/ejedu.2023.4.3.648.

T. T. D. S. Iqmatul Pratiwi, Desi Rahmawati, ‘Lectura?: Jurnal Pendidikan’, vol. 15, pp. 596–610, 2024.

A. Ketaren, F. Rahman, H. P. Meliala, N. Tarigan, and R. Simanjuntak, ‘Monitoring dan Evaluasi Pemanfaatan Platform Merdeka Mengajar pada Satuan Pendidikan Aswinta’, J. Pendidik. dan Konseling, vol. 4, no. 6, pp. 10340–10343, 2022, doi: https://doi.org/10.31004/jpdk.v4i6.10030.

H. Gomez-Adorno, G. Bel-Enguix, G. Sierra, J. C. Barajas, and W. Álvarez, ‘Machine Learning and Deep Learning Sentiment Analysis Models: Case Study on the SENT-COVID Corpus of Tweets in Mexican Spanish’, Informatics, vol. 11, no. 2, 2024, doi: 10.3390/informatics11020024.

A. Munna and E. Zuliarso, ‘Interpretasi model Stacking Ensemble untuk analisis sentimen ulasan aplikasi pinjaman online menggunakan LIME’, vol. 21, no. 2, pp. 183–196, 2024.

M. S. David and S. Renjith, ‘Comparison of word embeddings in text classification based on RNN and CNN’, IOP Conf. Ser. Mater. Sci. Eng., vol. 1187, no. 1, p. 012029, 2021, doi: 10.1088/1757-899x/1187/1/012029.

Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, ‘Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes’, J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 802–808, 2021, doi: 10.29207/resti.v5i4.3308.

L. Kurniasari and A. Setyanto, ‘Sentiment Analysis using Recurrent Neural Network’, J. Phys. Conf. Ser., vol. 1471, no. 1, 2020, doi: 10.1088/1742-6596/1471/1/012018.

L. Khan, A. Amjad, K. M. Afaq, and H. T. Chang, ‘Deep Sentiment Analysis Using CNN-LSTM Architecture of English and Roman Urdu Text Shared in Social Media’, Appl. Sci., vol. 12, no. 5, 2022, doi: 10.3390/app12052694.

L. Atikah, D. Purwitasari, and N. Suciati, ‘DETEKSI KEJADIAN LALU LINTAS PADA TEKS TWITTER DENGAN PENDEKATAN KLASIFIKASI MULTI-LABEL BERBASIS DEEP LEARNING MULTI-LABEL CLASSIFICATION USING DEEP LEARNING APPROACH ON TWITTER’, vol. 9, no. 1, pp. 87–96, 2022, doi: 10.25126/jtiik.202295206.

T. A. Zuraiyah, M. M. Mulyati, and G. H. F. Harahap, ‘Perbandingan Metode Naïve Bayes, Support Vector Machine Dan Recurrent Neural Network Pada Analisis Sentimen Ulasan Produk E-Commerce’, Multitek Indones., vol. 17, no. 1, pp. 27–43, 2023, doi: 10.24269/mtkind.v17i1.7092.

A. S. A. Al-jumaili, ‘NAMED ENTITY RECOGNITION’, vol. 25, pp. 5258–5264, 2024, doi: 10.12694/scpe.v25i6.3365.

C. Liu et al., ‘Improving sentiment analysis accuracy with emoji embedding’, J. Saf. Sci. Resil., vol. 2, no. 4, pp. 246–252, 2021, doi: 10.1016/j.jnlssr.2021.10.003.

. Maulana, P. A. Rahayuningsih, W. Irmayani, D. Saputra, and W. E. Jayanti, ‘Improved Accuracy of Sentiment Analysis Movie Review Using Support Vector Machine Based Information Gain’, J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012060.

S. Shumaly, M. Yazdinejad, and Y. Guo, ‘Persian sentiment analysis of an online store independent of pre-processing using convolutional neural network with fastText embeddings’, PeerJ Comput. Sci., vol. 7, pp. 1–22, 2021, doi: 10.7717/peerj-cs.422.

K. L. Tan, C. P. Lee, K. S. M. Anbananthen, and K. M. Lim, ‘RoBERTa-LSTM: A Hybrid Model for Sentiment Analysis With Transformer and Recurrent Neural Network’, IEEE Access, vol. 10, pp. 21517–21525, 2022, doi: 10.1109/ACCESS.2022.3152828.

L. Nemes and A. Kiss, ‘Social media sentiment analysis based on COVID-19’, J. Inf. Telecommun., vol. 5, no. 1, pp. 1–15, 2021, doi: 10.1080/24751839.2020.1790793.

A. R. Isnain, H. Sulistiani, B. M. Hurohman, A. Nurkholis, and S. Styawati, ‘Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen’, J. Edukasi dan Penelit. Inform., vol. 8, no. 2, p. 299, 2022, doi: 10.26418/jp.v8i2.54704.

H. Utami, ‘Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network’, Indones. J. Appl. Stat., vol. 5, no. 1, p. 31, 2022, doi: 10.13057/ijas.v5i1.56825.

W. Widayat, ‘Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning’, J. Media Inform. Budidarma, vol. 5, no. 3, p. 1018, 2021, doi: 10.30865/mib.v5i3.3111.

E. Subowo, F. Adi Artanto, I. Putri, and W. Umaedi, ‘Algoritma Bidirectional Long Short Term Memory untuk Analisis Sentimen Berbasis Aspek pada Aplikasi Belanja Online dengan Cicilan’, J. Fasilkom, vol. 12, no. 2, pp. 132–140, 2022, doi: 10.37859/jf.v12i2.3759.

D. E. Cahyani and I. Patasik, ‘Performance comparison of tf-idf and word2vec models for emotion text classification’, Bull. Electr. Eng. Informatics, vol. 10, no. 5, pp. 2780–2788, 2021, doi: 10.11591/eei.v10i5.3157.

H. D. Abubakar and M. Umar, ‘Sentiment Classification: Review of Text Vectorization Methods: Bag of Words, Tf-Idf, Word2vec and Doc2vec’, SLU J. Sci. Technol., vol. 4, no. 1&2, pp. 27–33, 2022, doi: 10.56471/slujst.v4i.266.

2022 Dang, N. C., Moreno-García, M. N., & De la Prieta, ‘Sentiment Analysis Based on Deep Learning in E-Commerce’, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 13369 LNAI, pp. 498–507, 2022, doi: 10.1007/978-3-031-10986-7_40.

Nadia Ristya Dewi, E. Yulia Puspaningrum, and H. Maulana, ‘Analisis Sentimen Tweet Vaksinasi Covid-19 Menggunakan RNN Dengan Metode TF-IDF Dan Word2Vec’, J. Inform. dan Sist. Inf., vol. 3, no. 1, pp. 56–65, 2022, doi: 10.33005/jifosi.v3i1.449.

D. Ariyus and D. Manongga, ‘Enhancing Sentiment Analysis of Indonesian Tourism Video Content Commentary on TikTok?: A FastText and Bi-LSTM Approach’, vol. 14, no. 6, pp. 18020–18028, 2024.

Darussalam and G. Arief, ‘Jurnal Resti’, Resti, vol. 1, no. 1, pp. 19–25, 2021.

K. P. C. Kalaiarasan, ‘“Web Services Performance Prediction with Confusion Matrix and K-Fold Cross Validation to Provide Prior Service Quality Characteristics”’, J. Electr. Syst., vol. 20, no. 2s, pp. 284–292, 2024, doi: 10.52783/jes.1139.

M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, ‘Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking’, IEEE Access, vol. 8, pp. 90847–90861, 2020, doi: 10.1109/ACCESS.2020.2994222.

R. A. Azizah, F. Bachtiar, and S. Adinugroho, ‘Klasifikasi Kinerja Akademik Siswa Menggunakan Neighbor Weighted K-Nearest Neighbor dengan Seleksi Fitur Information Gain’, J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 3, pp. 605–614, 2022, doi: 10.25126/jtiik.2022935751.

R. Sharma, S. Shrivastava, S. Kumar Singh, A. Kumar, S. Saxena, and R. Kumar Singh, ‘Deep-Abppred: Identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec’, Brief. Bioinform., vol. 22, no. 5, pp. 1–19, 2021, doi: 10.1093/bib/bbab065.

Y. A. Suwitono and F. J. Kaunang, ‘Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Daun Dengan Metode Data Mining SEMMA Menggunakan Keras’, J. Komtika (Komputasi dan Inform., vol. 6, no. 2, pp. 109–121, 2022, doi: 10.31603/komtika.v6i2.8054.

Z. Darojah, R. Susetyoko, and N. Ramadijanti, ‘Strategi Penanganan Imbalance Class Pada Model Klasifikasi Penerima Kartu Indonesia Pintar Kuliah Berbasis Neural Network Menggunakan Kombinasi SMOTE dan ENN’, J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, pp. 457–466, 2023, doi: 10.25126/jtiik.20231026480.

M. A. Amrustian, W. Widayat, and A. M. Wirawan, ‘Analisis Sentimen Evaluasi Terhadap Pengajaran Dosen di Perguruan Tinggi Menggunakan Metode LSTM’, J. Media Inform. Budidarma, vol. 6, no. 1, p. 535, 2022, doi: 10.30865/mib.v6i1.3527.
Abstract viewed = 0 times
PDF downloaded = 0 times