EVALUASI KINERJA CHATBOT DENGAN INTEGRASI ALGORITMA RNN DAN LSTM DALAM OPTIMALISASI RESPON PERCAKAPAN PADA SISTEM PMB
Main Article Content
Abstract
AI-based chatbots are increasingly used in various sectors to improve service efficiency, including in education. This research evaluates the performance of a chatbot on the New Student Admission (PMB) system with the integration of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) algorithms. In its implementation, chatbots play an important role in providing information and answering user questions automatically, but often have difficulty in understanding complex conversational contexts. The use of RNN and LSTM algorithms is expected to overcome the limitations of traditional chatbots in understanding conversational context and providing more relevant responses. The evaluation results show that the integration of RNN and LSTM is able to improve the quality of chatbot responses, both in terms of accuracy of 92.86% and relevance in complex conversation scenarios. The proposed chatbot proved to be effective in understanding user requests and providing faster answer responses compared to the conventional methods used. This implementation provides a more optimal solution in the PMB system, which is expected to be implemented at STMIK AKI Pati.
Article Details
How to Cite
sutarni, S., Prasetyo, E., & Sudiati, L. (2024). EVALUASI KINERJA CHATBOT DENGAN INTEGRASI ALGORITMA RNN DAN LSTM DALAM OPTIMALISASI RESPON PERCAKAPAN PADA SISTEM PMB. SOSCIED, 7(2), 589-598. https://doi.org/10.32531/jsoscied.v7i2.826
Section
Articles

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
LPPM Politeknik Katolik Saint Paul Sorong
References
A. Saihi, M. Ben-Daya, M. Hariga, and R. As’ad, “A Structural equation modeling analysis of generative AI chatbots adoption among students and educators in higher education,” Comput. Educ. Artif. Intell., vol. 7, p. 100274, 2024, doi: 10.1016/j.caeai.2024.100274.
T. T. Nguyen, A. D. Le, H. T. Hoang, and T. Nguyen, “NEU-chatbot: Chatbot for admission of National Economics University,” Comput. Educ. Artif. Intell., vol. 2, p. 100036, 2021, doi: 10.1016/j.caeai.2021.100036.
C. W. Okonkwo and A. Ade-Ibijola, “Chatbots applications in education: A systematic review,” Comput. Educ. Artif. Intell., vol. 2, p. 100033, 2021, doi: 10.1016/j.caeai.2021.100033.
Fahmi Yusron Fiddin, A. Komarudin, and M. Melina, “Chatbot Informasi Penerimaan Mahasiswa Baru Menggunakan Metode FastText dan LSTM,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 33–39, 2024, doi: 10.52158/jacost.v5i1.648.
E. Mursidah, L. Ambarwati, and F. A. Karima, “Implementasi Chatbot Layanan Informasi Pendaftaran Mahasiswa Baru Program Pascasarjana Departemen Teknik Informatika Its,” Netw. Eng. Res. Oper., vol. 7, no. 1, p. 43, 2022, doi: 10.21107/nero.v7i1.276.
R. Faurina, D. Revanza, and A. Sopran, “Pengembangan Chatbot Menggunakan Deep Feed-Forward Neural Network sebagai Pusat Layanan Informasi Akademik,” J. Eksplora Inform., pp. 120–129, 2023, doi: 10.30864/eksplora.v11i2.833.
Nuzul Hikmah, Dyah Ariyanti, and Ferry Agus Pratama, “Implementasi Chatbot Sebagai Virtual Assistant di Universitas Panca Marga Probolinggo menggunakan Metode TF-IDF,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 2, pp. 133–148, 2022, doi: 10.35746/jtim.v4i2.225.
[
T. A. Zuraiyah, D. K. Utami, and D. Herlambang, “Implementasi Chatbot Pada Pendaftaran Mahasiswa Baru Menggunakan Recurrent Neural Network,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 2, pp. 91–101, 2019, doi: 10.35760/tr.2019.v24i2.2388.
M. R. Al Fajri and B. Hartono, “Pengembangan Aplikasi Chatbot Telegram Menggunakan Framework Rasa untuk Pelayanan Administrasi di Perguruan Tinggi Universitas Stikubank,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, pp. 133–136, 2024, doi: 10.35870/jtik.v8i1.1370.
E. Prasetyo, K. Nugroho, and K. Hadiono, “Analisis Pengujian User Experience Website Stmik Aki Menggunakan Supr-Q Dalam Perspektif Human-Computer Interaction Analysis Of User Experience Testing Stmik Aki Website Using Supr-Q In Perspective Human-Computer Interaction” vol. 6, no. 1, 2023.
T. T. Nguyen, A. D. Le, H. T. Hoang, and T. Nguyen, “NEU-chatbot: Chatbot for admission of National Economics University,” Comput. Educ. Artif. Intell., vol. 2, p. 100036, 2021, doi: 10.1016/j.caeai.2021.100036.
C. W. Okonkwo and A. Ade-Ibijola, “Chatbots applications in education: A systematic review,” Comput. Educ. Artif. Intell., vol. 2, p. 100033, 2021, doi: 10.1016/j.caeai.2021.100033.
Fahmi Yusron Fiddin, A. Komarudin, and M. Melina, “Chatbot Informasi Penerimaan Mahasiswa Baru Menggunakan Metode FastText dan LSTM,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 33–39, 2024, doi: 10.52158/jacost.v5i1.648.
E. Mursidah, L. Ambarwati, and F. A. Karima, “Implementasi Chatbot Layanan Informasi Pendaftaran Mahasiswa Baru Program Pascasarjana Departemen Teknik Informatika Its,” Netw. Eng. Res. Oper., vol. 7, no. 1, p. 43, 2022, doi: 10.21107/nero.v7i1.276.
R. Faurina, D. Revanza, and A. Sopran, “Pengembangan Chatbot Menggunakan Deep Feed-Forward Neural Network sebagai Pusat Layanan Informasi Akademik,” J. Eksplora Inform., pp. 120–129, 2023, doi: 10.30864/eksplora.v11i2.833.
Nuzul Hikmah, Dyah Ariyanti, and Ferry Agus Pratama, “Implementasi Chatbot Sebagai Virtual Assistant di Universitas Panca Marga Probolinggo menggunakan Metode TF-IDF,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 2, pp. 133–148, 2022, doi: 10.35746/jtim.v4i2.225.
[
T. A. Zuraiyah, D. K. Utami, and D. Herlambang, “Implementasi Chatbot Pada Pendaftaran Mahasiswa Baru Menggunakan Recurrent Neural Network,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 2, pp. 91–101, 2019, doi: 10.35760/tr.2019.v24i2.2388.
M. R. Al Fajri and B. Hartono, “Pengembangan Aplikasi Chatbot Telegram Menggunakan Framework Rasa untuk Pelayanan Administrasi di Perguruan Tinggi Universitas Stikubank,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, pp. 133–136, 2024, doi: 10.35870/jtik.v8i1.1370.
E. Prasetyo, K. Nugroho, and K. Hadiono, “Analisis Pengujian User Experience Website Stmik Aki Menggunakan Supr-Q Dalam Perspektif Human-Computer Interaction Analysis Of User Experience Testing Stmik Aki Website Using Supr-Q In Perspective Human-Computer Interaction” vol. 6, no. 1, 2023.