PENGARUH KONSENTRASI MOLARITAS KOH TERHADAP SIFAT KELISTRIKAN BIO BATERAI AMPAS KOPI
Main Article Content
Abstract
Spent coffee grounds are an abundant organic waste material. Spent coffee grounds have significant potential as an environmentally friendly alternative energy source in bio-battery technology. This study aims to analyze the effect of KOH molarity concentration on the electrical properties of coffee ground-based bio-batteries. Variations in KOH molarity solutions of 1M, 3M, and 5M, each mixed with 50 grams of spent coffee grounds, were utilized to evaluate their effect on the electrical properties, including current, voltage, and power output. The results indicate that increasing the molarity concentration significantly enhances the bio-battery's performance, as evidenced by increased voltage and maximum power output. The highest electrical power output, 97.2 mW, was achieved at a 5M KOH concentration. The study concludes that selecting the appropriate molarity concentration is a key factor in optimizing the performance of coffee ground-based bio-batteries. This research contributes to the advancement of renewable energy development from organic waste.
Article Details
How to Cite
Pawarangan, I., Tumewu, W., Mawuntu, V., Kumendong, I., & Pungus, S. (2024). PENGARUH KONSENTRASI MOLARITAS KOH TERHADAP SIFAT KELISTRIKAN BIO BATERAI AMPAS KOPI. SOSCIED, 7(2), 797-803. https://doi.org/10.32531/jsoscied.v7i2.891
Section
Articles
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
LPPM Politeknik Katolik Saint Paul Sorong
References
Haliq, R., Kan, K., & Ismail, I. (2022). Utilization of Spent Coffee Grounds with Sodium Hydroxide (NaOH) as Electrolyte for Applications Bio-Battery. Defect and Diffusion Forum, 421, 111–120. https://doi.org/10.4028/p-9b45r6
Novitra, R., Aziz, H., & Taer, E. (2022). Supercapactors based on active carbon from spent arabica coffee ground using NaOH activators. Journal of Aceh Physics Society, 11(1), 33–40. https://doi.org/10.24815/jacps.v11i1.22227
Atabani, A. E., Al-Muhtaseb, A. H., Kumar, G., Saratale, G. D., Aslam, M., Khan, H. A., Said, Z., & Mahmoud, E. (2019). Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel, 254(February), 115640. https://doi.org/10.1016/j.fuel.2019.115640
International Coffee Organization (ICO). (2024). Coffee Market Report. https://www.icocoffee.org/documents/cy2023-24/cmr-0524-e.pdf
Kourmentza, C., Economou, C. N., Tsafrakidou, P., & Kornaros, M. (2018). Spent coffee grounds make much more than waste: Exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. Journal of Cleaner Production, 172, 980–992. https://doi.org/10.1016/j.jclepro.2017.10.088
Pawarangan, I., & Jefriyanto, W. (n.d.). Identifikasi Sifat Kelistrikan Bio-baterai Berbahan Dasar Ampas Kopi Identification of Electrical Properties of Bio-battery based on Spent Coffee Grounds. 92–96.
Haliq, R., Aryaraditya Prawira, I. K. Y., & Ismail, A. I. (2022). Utilization of Spent Coffee Grounds with Hydrochloric Acid (HCl) as Electrolyte for Bio-Battery Applications. Defect and Diffusion Forum, 421, 121–131. https://doi.org/10.4028/p-jum2pa
Pawarangan, I., Pineng, M., & Anum, S. A. (2022). The electrical productivity of Arabica coffee grounds battery based on electrode distance and dryness level. Jurnal Riset Dan Kajian Pendidikan Fisika, 9(1), 1–8. https://doi.org/10.12928/jrkpf.v9i1.20
Pawarangan, I., Pongsapan, F. P., Jefriyanto, W., Pineng, M., Tana, D. P., & Anum, S. A. (2022). Spent Coffee Grounds and Its Potential Applications for Electronic Devices: A Review. AIP Conference Proceedings, 2542(November), 050014-1-050014–050015. https://doi.org/10.1063/5.0103206
Pawarangan, I., Thana, D. P., Jefriyanto, W., & ... (2023). Analisis Struktur Morfologi Dan Gugus Fungsi Serbuk Kopi Robusta Toraja. Fullerene Journal of …, 8(1), 21–26. https://doi.org/10.37033/fjc.v8i1.520
Thana, D. P., Pawarangan, I., Jefriyanto, W., Pineng, M., Pasinggi, E. S., Bone, R. S., Mari’, Y., & Conny, C. (2023). Morphological structure and functional group of Toraja robusta and arabica spent coffee grounds for electronic device applications. Jurnal Riset Dan Kajian Pendidikan Fisika, 10(1), 22–27. https://doi.org/10.12928/jrkpf.v10i1.378
Surawan, T., & Priambodo, P. S. (2019). Supercapacitor Based On Active Carbon Electrode: Review. 2019 16th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, 1–8. https://doi.org/10.1109/QIR.2019.8898254
Ahmad, A., Gondal, M. A., Hassan, M., Iqbal, R., Ullah, S., Alzahrani, A. S., Memon, W. A., Mabood, F., & Melhi, S. (2023). Preparation and Characterization of Physically Activated Carbon and Its Energetic Application for All-Solid-State Supercapacitors: A Case Study. ACS Omega, 8(24), 21653–21663. https://doi.org/10.1021/acsomega.3c01065
Blinová, L., Pastierova, A., & Sirotiak, M. (2017). Biodiesel Production from Spent Coffee Grounds. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 25(40), 113–121. https://doi.org/10.1515/rput-2017-0013
Gao, G., Cheong, L. Z., Wang, D., & Shen, C. (2018). Pyrolytic carbon derived from spent coffee grounds as anode for sodium-ion batteries. Carbon Resources Conversion, 1(1), 104–108. https://doi.org/10.1016/j.crcon.2018.04.001
Luna-Lama, F., Rodríguez-Padrón, D., Puente-Santiago, A. R., Muñoz-Batista, M. J., Caballero, A., Balu, A. M., Romero, A. A., & Luque, R. (2019). Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. Journal of Cleaner Production, 207, 411–417. https://doi.org/10.1016/j.jclepro.2018.10.024
Tsai, S. Y., Muruganantham, R., Tai, S. H., Chang, B. K., Wu, S. C., Chueh, Y. L., & Liu, W. R. (2019). Coffee grounds-derived carbon as high performance anode materials for energy storage applications. Journal of the Taiwan Institute of Chemical Engineers, 97, 178–188. https://doi.org/10.1016/j.jtice.2019.01.020
Vo, T. N., Le, V. T., Dang, N. K., Le, M. L. P., Nguyen, V. H., Tran, V. M., Nguyen, M. T., Tran, N. H. T., Nguyen, T. L., & Kim, I. T. (2024). ZnCl2-based activation for converting spent coffee grounds into a robust anode for Li-ion batteries. Biomass and Bioenergy, 181(April 2023), 107058. https://doi.org/10.1016/j.biombioe.2024.107058
angprasert, T., Sattayarut, V., Rajrujithong, C., Khanchaitit, P., Khemthong, P., Chanthad, C., & Grisdanurak, N. (2022). Making use of the inherent nitrogen content of spent coffee grounds to create nanostructured activated carbon for supercapacitor and lithium-ion battery applications. Diamond and Related Materials, 127(April), 109164. https://doi.org/10.1016/j.diamond.2022.109164
Karakaş, D. E., Akdemir, M., Atelge, M. R., Kaya, M., & Atabani, A. E. (2023). Defatted spent coffee grounds-supported cobalt catalyst as a promising supercapacitor electrode for hydrogen production and energy storage. Clean Technologies and Environmental Policy, 25(2), 483–493. https://doi.org/10.1007/s10098-021-02164-2
Novitra, R., Aziz, H., & Taer, E. (2022). Supercapactors based on active carbon from spent arabica coffee ground using NaOH activators. Journal of Aceh Physics Society, 11(1), 33–40. https://doi.org/10.24815/jacps.v11i1.22227
Atabani, A. E., Al-Muhtaseb, A. H., Kumar, G., Saratale, G. D., Aslam, M., Khan, H. A., Said, Z., & Mahmoud, E. (2019). Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel, 254(February), 115640. https://doi.org/10.1016/j.fuel.2019.115640
International Coffee Organization (ICO). (2024). Coffee Market Report. https://www.icocoffee.org/documents/cy2023-24/cmr-0524-e.pdf
Kourmentza, C., Economou, C. N., Tsafrakidou, P., & Kornaros, M. (2018). Spent coffee grounds make much more than waste: Exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. Journal of Cleaner Production, 172, 980–992. https://doi.org/10.1016/j.jclepro.2017.10.088
Pawarangan, I., & Jefriyanto, W. (n.d.). Identifikasi Sifat Kelistrikan Bio-baterai Berbahan Dasar Ampas Kopi Identification of Electrical Properties of Bio-battery based on Spent Coffee Grounds. 92–96.
Haliq, R., Aryaraditya Prawira, I. K. Y., & Ismail, A. I. (2022). Utilization of Spent Coffee Grounds with Hydrochloric Acid (HCl) as Electrolyte for Bio-Battery Applications. Defect and Diffusion Forum, 421, 121–131. https://doi.org/10.4028/p-jum2pa
Pawarangan, I., Pineng, M., & Anum, S. A. (2022). The electrical productivity of Arabica coffee grounds battery based on electrode distance and dryness level. Jurnal Riset Dan Kajian Pendidikan Fisika, 9(1), 1–8. https://doi.org/10.12928/jrkpf.v9i1.20
Pawarangan, I., Pongsapan, F. P., Jefriyanto, W., Pineng, M., Tana, D. P., & Anum, S. A. (2022). Spent Coffee Grounds and Its Potential Applications for Electronic Devices: A Review. AIP Conference Proceedings, 2542(November), 050014-1-050014–050015. https://doi.org/10.1063/5.0103206
Pawarangan, I., Thana, D. P., Jefriyanto, W., & ... (2023). Analisis Struktur Morfologi Dan Gugus Fungsi Serbuk Kopi Robusta Toraja. Fullerene Journal of …, 8(1), 21–26. https://doi.org/10.37033/fjc.v8i1.520
Thana, D. P., Pawarangan, I., Jefriyanto, W., Pineng, M., Pasinggi, E. S., Bone, R. S., Mari’, Y., & Conny, C. (2023). Morphological structure and functional group of Toraja robusta and arabica spent coffee grounds for electronic device applications. Jurnal Riset Dan Kajian Pendidikan Fisika, 10(1), 22–27. https://doi.org/10.12928/jrkpf.v10i1.378
Surawan, T., & Priambodo, P. S. (2019). Supercapacitor Based On Active Carbon Electrode: Review. 2019 16th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, 1–8. https://doi.org/10.1109/QIR.2019.8898254
Ahmad, A., Gondal, M. A., Hassan, M., Iqbal, R., Ullah, S., Alzahrani, A. S., Memon, W. A., Mabood, F., & Melhi, S. (2023). Preparation and Characterization of Physically Activated Carbon and Its Energetic Application for All-Solid-State Supercapacitors: A Case Study. ACS Omega, 8(24), 21653–21663. https://doi.org/10.1021/acsomega.3c01065
Blinová, L., Pastierova, A., & Sirotiak, M. (2017). Biodiesel Production from Spent Coffee Grounds. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 25(40), 113–121. https://doi.org/10.1515/rput-2017-0013
Gao, G., Cheong, L. Z., Wang, D., & Shen, C. (2018). Pyrolytic carbon derived from spent coffee grounds as anode for sodium-ion batteries. Carbon Resources Conversion, 1(1), 104–108. https://doi.org/10.1016/j.crcon.2018.04.001
Luna-Lama, F., Rodríguez-Padrón, D., Puente-Santiago, A. R., Muñoz-Batista, M. J., Caballero, A., Balu, A. M., Romero, A. A., & Luque, R. (2019). Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. Journal of Cleaner Production, 207, 411–417. https://doi.org/10.1016/j.jclepro.2018.10.024
Tsai, S. Y., Muruganantham, R., Tai, S. H., Chang, B. K., Wu, S. C., Chueh, Y. L., & Liu, W. R. (2019). Coffee grounds-derived carbon as high performance anode materials for energy storage applications. Journal of the Taiwan Institute of Chemical Engineers, 97, 178–188. https://doi.org/10.1016/j.jtice.2019.01.020
Vo, T. N., Le, V. T., Dang, N. K., Le, M. L. P., Nguyen, V. H., Tran, V. M., Nguyen, M. T., Tran, N. H. T., Nguyen, T. L., & Kim, I. T. (2024). ZnCl2-based activation for converting spent coffee grounds into a robust anode for Li-ion batteries. Biomass and Bioenergy, 181(April 2023), 107058. https://doi.org/10.1016/j.biombioe.2024.107058
angprasert, T., Sattayarut, V., Rajrujithong, C., Khanchaitit, P., Khemthong, P., Chanthad, C., & Grisdanurak, N. (2022). Making use of the inherent nitrogen content of spent coffee grounds to create nanostructured activated carbon for supercapacitor and lithium-ion battery applications. Diamond and Related Materials, 127(April), 109164. https://doi.org/10.1016/j.diamond.2022.109164
Karakaş, D. E., Akdemir, M., Atelge, M. R., Kaya, M., & Atabani, A. E. (2023). Defatted spent coffee grounds-supported cobalt catalyst as a promising supercapacitor electrode for hydrogen production and energy storage. Clean Technologies and Environmental Policy, 25(2), 483–493. https://doi.org/10.1007/s10098-021-02164-2