KARAKTERISTIK KARBON AKTIF BERBASIS LIMBAH PELEPAH KELAPA DENGAN VARIASI KONSENTRASI KOH SEBAGAI MATERIAL ELEKTRODA SUPERKAPASITOR
Main Article Content
Abstract
The current energy needs are increasing due to technological advances and the increasing number of technology users. So, to solve this problem, it is necessary to make major changes and energy renewal by using alternative energy. One of the utilization of alternative energy is energy storage devices such as supercapacitors. In this study, a test was carried out on the activation of coconut stem waste as a supercapacitor electrode with variations in KOH electrolyte, namely 6M, 7M, 8M which produced voltages of 1.254 V, 1.187 V, 1.105 V and produced currents of 87.2 mA, 46.52 mA, 25.38 mA respectively. Based on the results of the study, it showed a decrease in the concentration of electrolytes 6M, 7M, 8M. So it can be concluded that different electrolytes have a significant effect on the voltage and electric current values produced by the supercapacitor electrodes.
Article Details
How to Cite
Kimbal, A., Taunaumang, H., Tumimomor, F., Rampengan, A., & Pawarangan, I. (2025). KARAKTERISTIK KARBON AKTIF BERBASIS LIMBAH PELEPAH KELAPA DENGAN VARIASI KONSENTRASI KOH SEBAGAI MATERIAL ELEKTRODA SUPERKAPASITOR. SOSCIED, 8(1), 50-56. https://doi.org/10.32531/jsoscied.v8i1.913
Section
Articles

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
LPPM Politeknik Katolik Saint Paul Sorong
References
F. Tumimomor, A. Maddu, and G. Pari, “Pemanfaatan Karbon Aktif Dari Bambu Sebagai Elektroda Superkapasitor,” J. Ilm. Sains, vol. 17, no. 1, p. 73, 2017, doi: 10.35799/jis.17.1.2017.15802.
A. Riyanto, “Superkapasitor Sebagai Piranti Penyimpan Energi Listrik Masa Depan,” J. Ilm. Pendidik. Fis. Al-Biruni, vol. 3, no. 2, pp. 56–63, 2014, doi: 10.24042/jpifalbiruni.v3i2.73.
N. NURHASMIA, “Studi Penggunaan Superkapasitor Sebagai Media Penyimpan Energi,” Progress. Phys. J., vol. 2, no. 2, p. 79, 2021, doi: 10.30872/ppj.v2i2.770.
Xian Jian et al., “Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions,” J. Electr. Eng., vol. 4, no. 2, pp. 75–87, 2016, doi: 10.17265/2328-2223/2016.02.004.
D. Dahlan, N. Sartika, Astuti, E. L. Namigo, and E. Taer, “Effect of TiO2 on duck eggshell membrane as separators in supercapacitor applications,” Mater. Sci. Forum, vol. 827, pp. 151–155, 2015, doi: 10.4028/www.scientific.net/MSF.827.151.
G. Gautham Prasad, N. Shetty, S. Thakur, Rakshitha, and K. B. Bommegowda, “Supercapacitor technology and its applications: A review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 561, no. 1, 2019, doi: 10.1088/1757-899X/561/1/012105.
P. Febriyanto, J. Jerry, A. W. Satria, and H. Devianto, “Pembuatan Dan Karakterisasi Karbon Aktif Berbahan Baku Limbah Kulit Durian Sebagai Elektroda Superkapasitor,” J. Integr. Proses, vol. 8, no. 1, p. 19, 2019, doi: 10.36055/jip.v8i1.5439.
M. S. Dr. Rika, “Pemanafatan Limbah Pelepah Kelapa Sawit Untuk Pembuatan Elektroda Superkapasitor.”
O. N. Tetra et al., “REVIEW : SUPERKAPASITOR BERBAHAN DASAR KARBON AKTIF DAN LARUTAN IONIK SEBAGAI ELEKTROLIT REVIEW : SUPERKAPASITOR BASED ON ACTIVATED CARBON AND IONIC SOLUTION AS ELECTROLYTE,” vol. 6, no. 1, pp. 39–46, 2018.
R. Achmad, S. Fauziah, and M. Zakir, “Pembuatan dan Modifikasi Karbon Aktif Pelepah Kelapa Sawit (Cocus nucifera L.) Sebagai Adsorben Metilen Biru,” Indones. J. Pure Appl. Chem., vol. 3, no. 2, p. 1, 2021.
A. Ariyani, P. A. R., E. R. P., and F. R., “PEMANFAATAN KULIT SINGKONG SEBAGAI BAHAN BAKU ARANG AKTIF DENGAN VARIASI KONSENTRASI NaOH DAN SUHU,” Konversi, vol. 6, no. 1, p. 7, 2017, doi: 10.20527/k.v6i1.2992.
T. D. Larasati, A. S. Sanjaya, B. A. V. Agatha, and N. P. Tebay, Activated Carbon Produced by Carbonization and Chemical Activation of Coconut Frond for Air Batteries. Atlantis Press International BV, 2023. doi: 10.2991/978-94-6463-180-7_2.
V. O. Njoku, M. A. Islam, M. Asif, and B. H. Hameed, “Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide,” J. Anal. Appl. Pyrolysis, 2014, doi: 10.1016/j.jaap.2014.08.020.
M. F. Wu, C. H. Hsiao, C. Y. Lee, and N. H. Tai, “Flexible Supercapacitors Prepared Using the Peanut-Shell-Based Carbon,” ACS Omega, vol. 5, no. 24, pp. 14417–14426, 2020, doi: 10.1021/acsomega.0c00966.
Y. Wang et al., “Hydrothermal synthesis and electrochemical properties of Sn-based peanut shell biochar electrode materials,” RSC Adv., vol. 14, no. 9, pp. 6298–6309, 2024, doi: 10.1039/d3ra08655k.
H. D. Admin Alif, Olly Norita Tetra, Hermansyah Aziz, “Sebagai Elektroda Superkapasitor,” vol. 5, no. 2, pp. 38–43, 2016.
A. Riyanto, “Superkapasitor Sebagai Piranti Penyimpan Energi Listrik Masa Depan,” J. Ilm. Pendidik. Fis. Al-Biruni, vol. 3, no. 2, pp. 56–63, 2014, doi: 10.24042/jpifalbiruni.v3i2.73.
N. NURHASMIA, “Studi Penggunaan Superkapasitor Sebagai Media Penyimpan Energi,” Progress. Phys. J., vol. 2, no. 2, p. 79, 2021, doi: 10.30872/ppj.v2i2.770.
Xian Jian et al., “Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions,” J. Electr. Eng., vol. 4, no. 2, pp. 75–87, 2016, doi: 10.17265/2328-2223/2016.02.004.
D. Dahlan, N. Sartika, Astuti, E. L. Namigo, and E. Taer, “Effect of TiO2 on duck eggshell membrane as separators in supercapacitor applications,” Mater. Sci. Forum, vol. 827, pp. 151–155, 2015, doi: 10.4028/www.scientific.net/MSF.827.151.
G. Gautham Prasad, N. Shetty, S. Thakur, Rakshitha, and K. B. Bommegowda, “Supercapacitor technology and its applications: A review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 561, no. 1, 2019, doi: 10.1088/1757-899X/561/1/012105.
P. Febriyanto, J. Jerry, A. W. Satria, and H. Devianto, “Pembuatan Dan Karakterisasi Karbon Aktif Berbahan Baku Limbah Kulit Durian Sebagai Elektroda Superkapasitor,” J. Integr. Proses, vol. 8, no. 1, p. 19, 2019, doi: 10.36055/jip.v8i1.5439.
M. S. Dr. Rika, “Pemanafatan Limbah Pelepah Kelapa Sawit Untuk Pembuatan Elektroda Superkapasitor.”
O. N. Tetra et al., “REVIEW : SUPERKAPASITOR BERBAHAN DASAR KARBON AKTIF DAN LARUTAN IONIK SEBAGAI ELEKTROLIT REVIEW : SUPERKAPASITOR BASED ON ACTIVATED CARBON AND IONIC SOLUTION AS ELECTROLYTE,” vol. 6, no. 1, pp. 39–46, 2018.
R. Achmad, S. Fauziah, and M. Zakir, “Pembuatan dan Modifikasi Karbon Aktif Pelepah Kelapa Sawit (Cocus nucifera L.) Sebagai Adsorben Metilen Biru,” Indones. J. Pure Appl. Chem., vol. 3, no. 2, p. 1, 2021.
A. Ariyani, P. A. R., E. R. P., and F. R., “PEMANFAATAN KULIT SINGKONG SEBAGAI BAHAN BAKU ARANG AKTIF DENGAN VARIASI KONSENTRASI NaOH DAN SUHU,” Konversi, vol. 6, no. 1, p. 7, 2017, doi: 10.20527/k.v6i1.2992.
T. D. Larasati, A. S. Sanjaya, B. A. V. Agatha, and N. P. Tebay, Activated Carbon Produced by Carbonization and Chemical Activation of Coconut Frond for Air Batteries. Atlantis Press International BV, 2023. doi: 10.2991/978-94-6463-180-7_2.
V. O. Njoku, M. A. Islam, M. Asif, and B. H. Hameed, “Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide,” J. Anal. Appl. Pyrolysis, 2014, doi: 10.1016/j.jaap.2014.08.020.
M. F. Wu, C. H. Hsiao, C. Y. Lee, and N. H. Tai, “Flexible Supercapacitors Prepared Using the Peanut-Shell-Based Carbon,” ACS Omega, vol. 5, no. 24, pp. 14417–14426, 2020, doi: 10.1021/acsomega.0c00966.
Y. Wang et al., “Hydrothermal synthesis and electrochemical properties of Sn-based peanut shell biochar electrode materials,” RSC Adv., vol. 14, no. 9, pp. 6298–6309, 2024, doi: 10.1039/d3ra08655k.
H. D. Admin Alif, Olly Norita Tetra, Hermansyah Aziz, “Sebagai Elektroda Superkapasitor,” vol. 5, no. 2, pp. 38–43, 2016.