KARAKTERISTIK I-V ELEKTRODA SUPERKAPASITOR BERBASIS KARBON AKTIF KULIT KACANG BATIK KAWANGKOAN

Main Article Content

Gersom Jeremia Tamara
https://orcid.org/0009-0002-6842-0573
Jefferson Polii
Farly R. Tumimomor
Alfrie M Rampengan
Satyano W. Mongan

Abstract

The energy crisis is one of the major problems facing the world today, especially electrical energy. Supercapacitors are an alternative solution as an electrical energy storage divais. In this study, batik kawangkoan peanut shell samples have been successfully modified into activated carbon as a supercapacitor electrode. The carbonization process is given a carbonization temperature treatment of 350oC, 400oC, 450oC, 500oC, 550oC which is activated using a 7 M KOH solution by heating in a furnace at 750oC to produce a voltage of 0.966 V, 1.273 V, respectively, 1.295 V, 1.325 V, 1.654 V and currents of 18.56 mA, 23.43 mA, 26.47 mA, 30.53 mA, 48.24 mA which shows that there is a change in the value of current and voltage in supercapacitors, and the best sample is in the sample with 550oC carbonization temperature treatment. Thus, it can be concluded that carbonization temperature has an influence on the current and voltage characteristics of supercapacitor electrodes.

Article Details

How to Cite
Tamara, G., Polii, J., Tumimomor, F., Rampengan, A., & Mongan, S. (2024). KARAKTERISTIK I-V ELEKTRODA SUPERKAPASITOR BERBASIS KARBON AKTIF KULIT KACANG BATIK KAWANGKOAN. SOSCIED, 7(2), 413-420. https://doi.org/10.32531/jsoscied.v7i2.834
Section
Articles

References

F. Tumimomor, A. Maddu, and G. Pari, “Pemanfaatan Karbon Aktif Dari Bambu Sebagai Elektroda Superkapasitor,” J. Ilm. Sains, vol. 17, no. 1, p. 73, 2017, doi: 10.35799/jis.17.1.2017.15802.

E. Taer et al., “The synthesis of activated carbon made from banana stem fibers as the supercapacitor electrodes,” Mater. Today Proc., vol. 44, pp. 3346–3349, 2020, doi: 10.1016/j.matpr.2020.11.645.

S. Karthikeyan, B. Narenthiran, A. Sivanantham, L. Deepak, and T. Maridurai, “Materials Today : Proceedings Supercapacitor : Evolution and review,” Mater. Today Proc., vol. 46, no. xxxx, pp. 3984–3988, 2021, [Online]. Available: https://doi.org/10.1016/j.matpr.2021.02.526

M. Muthu Balasubramanian, M. Subramani, D. Murugan, and S. Ponnusamy, “Groundnut shell–derived porous carbon-based supercapacitor with high areal mass loading using carbon cloth as current collector,” Ionics (Kiel)., vol. 26, no. 12, pp. 6297–6308, 2020, doi: 10.1007/s11581-020-03754-8.

Y. Wang et al., “Hydrothermal synthesis and electrochemical properties of Sn-based peanut shell biochar electrode materials,” RSC Adv., vol. 14, no. 9, pp. 6298–6309, 2024, doi: 10.1039/d3ra08655k.

G. Sharma et al., “Activated Carbon as Superadsorbent and Sustainable Material for Diverse Applications,” Adsorpt. Sci. Technol., vol. 2022, 2022, doi: 10.1155/2022/4184809.

R. Komala, D. S. Dewi, and N. Pandiyah, “Proses Adsorpsi Karbon Aktif Kulit Kacang Tanah Terhadap Penurunan Kadar Cod Dan Bod Limbah Cair Industri Tahu,” J. Redoks, vol. 6, no. 2, pp. 139–148, 2021, doi: 10.31851/redoks.v6i2.6382.

H. Aziz, O. N. Tetra, A. Alif, Syukri, and W. Ramadhan, “Electrical properties of supercapacitor electrode-based on activated carbon from waste palm kernel shells,” Der Pharma Chem., vol. 8, no. 15, pp. 227–232, 2016.

W. Zhang et al., “Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications,” Energy, vol. 128, pp. 618–625, 2017, doi: 10.1016/j.energy.2017.04.065.

G. Sania, E. Taer, and H. Aziz, “Utilization of activated carbon from used robusta coffee ground activated using potassium hydroxide (KOH) as a material for supercapacitor electrodes,” J. Aceh Phys. Soc., vol. 11, no. 1, pp. 24–32, 2022, doi: 10.24815/jacps.v11i1.22190.

M. F. Pomalingo, F. Fatimah, and I. W. G. Suarjana, “Penerapan Dan Pelatihan Mesin Penyangrai Kacang Kawangkoan Pada Ikm Rimawar Kabupaten Minahasa: Application and Training of Kawangkoan Peanut …,” Abdi Techno, vol. 3, no. 1, pp. 1–11, 2022, [Online]. Available: http://agritech.unhas.ac.id/ojs/index.php/abditechno/article/view/734

R. Komala, Rina Dwi Oktaiani, Sisnayati, Dian Sari Dewi, Hendra Dwipayana, and Nurlela, “Karakterisasi Karbon Aktif Pelet Kulit Kacang Tanah Dan Aplikasinya Pada Limbah Pewarna Sintesis,” J. Redoks, vol. 9, no. 1, pp. 43–54, 2024, doi: 10.31851/redoks.v9i1.14155.

D. Lan et al., “Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode,” J. Mater. Sci. Mater. Electron., vol. 31, no. 21, pp. 18541–18553, 2020, doi: 10.1007/s10854-020-04398-0.

M. N. Islami, N. N. Rupiasih, M. Sumadiyasa, and I. B. S. Manuaba, “Studi Kurva Karakteristik Arus-Tegangan ( I-V ) Membran Komposit Kitosan-Nanopartikel Perak The Study of Current-Voltage ( I-V ) Characteristic Curve of Chitosan-Silver Nanoparticle Composite Membrane,” Bul. Fis., vol. 19, no. 2, pp. 40–45, 2018.

R. Gu et al., “Electrolyte for Ceramic Supercapacitors,” vol. 45, no. July 2018, pp. 8243–8247, 2019.

Y. Qiao, C. Zhang, F. Kong, Q. Zhao, A. Kong, and Y. Shan, “Activated biochar derived from peanut shells as the electrode materials with excellent performance in Zinc-air battery and supercapacitance,” Waste Manag., vol. 125, pp. 257–267, 2021, doi: 10.1016/j.wasman.2021.02.057.

L. Pandey et al., “Fabrication of activated carbon electrodes derived from peanut shell for high-performance supercapacitors,” Biomass Convers. Biorefinery, vol. 13, no. 8, pp. 6737–6746, 2023, doi: 10.1007/s13399-021-01701-9.
[
S. Wang, H. Nam, and H. Nam, “Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space,” J. Environ. Chem. Eng., vol. 8, no. 2, p. 103683, 2020, doi: 10.1016/j.jece.2020.103683.

N. Yadav, M. K. Singh, N. Yadav, and S. A. Hashmi, “High performance quasi-solid-state supercapacitors with peanut-shell-derived porous carbon,” J. Power Sources, vol. 402, no. June, pp. 133–146, 2018, doi: 10.1016/j.jpowsour.2018.09.032.

Y. Zhan et al., “Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors,” J. Energy Storage, vol. 34, no. November 2020, p. 102180, 2021, doi: 10.1016/j.est.2020.102180.

A. Fletcher, T. Somorin, and O. Aladeokin, “Production of High Surface Area Activated Carbon from Peanut Shell by Chemical Activation with Zinc Chloride: Optimisation and Characterization,” Bioenergy Res., vol. 17, no. 1, pp. 467–478, 2024, doi: 10.1007/s12155-023-10683-7.

E. Arslanoğlu, M. Ş. A. Eren, H. Arslanoğlu, and H. Çiftçi, “Fabrication, characterization, and adsorption applications of low-cost hybride activated carbons from peanut shell-vinasse mixtures by one-step pyrolysis,” Biomass Convers. Biorefinery, vol. 13, no. 3, pp. 2321–2335, 2023, doi: 10.1007/s13399-021-01400-5.
Abstract viewed = 83 times
PDF downloaded = 177 times