PEMANFAATAN KARBON AKTIF ECENG GONDOK (EICHHORNIA CRASSIPES) SEBAGAI MATERIAL ELEKTRODA SUPERKAPASITOR DENGAN VARIASI KOSENTRASI ELEKTROLIT Na2SO4

Main Article Content

Aldo Nandito Watulingas
Alfrie M. Rampengan
Farly Reynol Tumimomor
Donny R. Wenas
Jeilen G. N Nusa

Abstract

The utilization of renewable energy has become a major focus in an effort to reduce dependence on fossil energy sources and reduce negative impacts on the environment, making it important to increase the use of clean and renewable energy. One of the biggest challenges in the application of renewable energy is efficient and sustainable energy storage. In this case, supercapacitors have proven to be a solution as an efficient and sustainable energy storage device. In this study, water hyacinth biomass material was tested as a supercapacitor electrode which was influenced by variations in Na2SO4 electrolyte, namely 1M, 2M, and 3 M, which produced voltages of 1.037 V, 1.404 V, and 1.647 V respectively and electric currents of 18.56 mA, 23.32 mA, and 32.34 mA. From the results of this study, it was found that the sample with an electrolyte concentration of  Na2SO4 3 M had higher voltage and amperage values, which amounted to 1.654 V and 32.34 mA due to the greater number of  Na+ and SO42- ions in the electrolyte. So it can be concluded that the variation of Na2SO4 electrolyte concentration of 1 M, 2 M, and 3 M results in an increase in the value of voltage and electric current produced by supercapacitors.

Article Details

How to Cite
Watulingas, A., Rampengan, A., Tumimomor, F., Wenas, D., & Nusa, J. (2024). PEMANFAATAN KARBON AKTIF ECENG GONDOK (EICHHORNIA CRASSIPES) SEBAGAI MATERIAL ELEKTRODA SUPERKAPASITOR DENGAN VARIASI KOSENTRASI ELEKTROLIT Na2SO4. SOSCIED, 7(2), 442-449. https://doi.org/10.32531/jsoscied.v7i2.840
Section
Articles

References

Wang, Q., Yan, J. and Fan, Z. (2016) Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities, The Royal Society of Chemistry, 9(3), 729–762. Available at: https://doi.org/10.1039/c5ee03109e.

Bhat, M.Y. et al. (2023). Frontiers and recent developments on supercapacitor’s materials, design, and applications: Transport and power system applications, Journal of Energy Storage, 58, 106104. Available at: https://doi.org/https://doi.org/10.1016/j.est.2022.106104.

Tumimomor, F., Maddu, A. and Pari, G. (2017). Pemanfaatan Karbon Aktif Dari Bambu Sebagai Elektroda Superkapasitor, Jurnal Ilmiah Sains, 17(1), 73. Available at: https://doi.org/10.35799/jis.17.1.2017.15802.

Forouzandeh, P., Kumaravel, V. and Pillai, S.C. (2020). Electrode materials for supercapacitors: A review of recent advances, Catalysts, 10(9), 1–73. Available at: https://doi.org/10.3390/catal10090969.

Kim, S., Lee, S. and Park, S. (2022). Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives, Journal of nanomaterials, Available at: https://doi.org/https://doi.org/10.3390/nano12203708.

El-Zaidia, M.M, Khafagy, A.H., Hassan, S. and Zaki, M.Z. (2019). The effect of electrolyte concentration on the energy storage using MnO2 Supercapacitor electrode, IOSR Journal of Engineering (IOSRJEN), 09(2), 11–19.

Kurniawan, F. et al. (2014). Carbon microsphere from water hyacinth for supercapacitor electrode, Journal of the Taiwan Institute of Chemical Engineers. Available at: https://doi.org/10.1016/j.jtice.2014.10.002.

Putri, L.O.N. and Nurhilal, O. (2022). Pemanfaatan Arang Aktif Eceng Gondok Untuk Material Elektroda Superkapasitor, Jurnal Ilmu dan Inovasi Fisika, 06(02), 131–136.

MASAKUL, P. et al. (2023). The electrochemical properties of water hyacinth-derived activated carbon, Journal of Metals, Materials and Minerals, 33(3), 2–7. Available at: https://doi.org/10.55713/jmmm.v33i3.1618.

González, P. (2017). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renewable and Sustainable Energy, 82, 1393–1414. Available at: https://dx.doi.org/10.1016/j.rser.2017.04.117.

Wu, L. et al. (2020). Hierarchically structured porous materials: synthesis strategies and applications in energy storage, National Science Review, 7(11), 1667–1701. Available at: https://doi.org/10.1093/nsr/nwaa183.

Novitra, R. (2021). Superkapasitor Berbahan Dasar Karbon Aktif Ampas Biji Kopi dengan Aktivator NAOH, Journal of Chemical Information and Modeling. Universitas Andalas.

Castro-gutiérrez, J., Celzard, A. and Fierro, V. (2020). Energy Storage in Supercapacitors: Focus on Tannin-Derived Carbon Electrodes, Frontiers in Materials, 7(July), 1–25. Available at: https://doi.org/10.3389/fmats.2020.00217.

Sharma, P. and Kumar, V. (2019). Study of electrode and electrolyte material of supercapacitor, Materials Today: Proceedings, 33(xxxx), 1573–1578. Available at: https://doi.org/10.1016/j.matpr.2020.04.694.

Rajapriya, A., Keerthana, S. and Ponpandian, N. (2023). Fundamental understanding of charge storage mechanism, Smart Supercapacitors: Fundamentals, Structures, and Applications, 65–82. Available at: https://doi.org/10.1016/B978-0-323-90530-5.00034-4.

Wang, Y., Song, Y. and Xia, Y. (2016). Electrochemical capacitors: Mechanism, materials, systems, characterization and applications, Chemical Society Reviews, 45(21), 5925–5950. Available at: https://doi.org/10.1039/c5cs00580a.

Pandey, D., Kumar, K.S. and Thomas, J. (2024). Supercapacitor electrode energetics and mechanism of operation: Uncovering the voltage window, Progress in Materials Science, 141(March). Available at: https://doi.org/10.1016/j.pmatsci.2023.101219.

Mendhe, A. and Panda, H.. (2023). A review on electrolytes for supercapacitor device, Springer, (July). Available at: https://doi.org/10.1007/s43939-023-00065-3.

Krishnan, P. and Biju, V. (2022). Effect of electrolyte concentration on the electrochemical performance of RGO- Na 2 SO 4 supercapacitor, 54, 958–962.

Samantaray, S. et al. (2023). Unleashing recent electrolyte materials for next-generation supercapacitor applications: A comprehensive review, Journal of Energy Storage, 72(November). Available at: https://doi.org/https://doi.org/10.1016/j.est.2023.108352.
Abstract viewed = 23 times
PDF downloaded = 32 times