PREDIKSI JUMLAH MAHASISWA BARU FMIPA-K UNIMA MENGGUNAKAN MODEL REGRESI NON-LINEAR

Main Article Content

Ningsi M. Lengkong
Rahel A. Langat
Eka Parapaga
Geraldo Tetiwar
Auriel Tuerah
Tamariska Pangemanan
James U. L. Mangobi
Marvel G. Maukar

Abstract

This study aims to forecast the number of new students in each study program within the Faculty of Mathematics, Natural Sciences, and Earth Sciences at Manado State University (UNIMA) using a nonlinear regression model, specifically a polynomial model, based on historical enrollment data from the past five years. Accurate forecasting is expected to significantly support more strategic planning in creating a better campus environment and improving the comfort of future prospective students. The data in this study were processed using Microsoft Excel software by developing a third-order polynomial model, selected based on the coefficient of determination (R-squared) as the most suitable fit for the available data. The results indicate that the number of new students in each study program at FMIPA-K UNIMA is projected to increase significantly over the next ten years. This research can serve as a valuable reference for the faculty and study programs to anticipate future enrollment trends.

Article Details

How to Cite
Lengkong, N., Langat, R., Parapaga, E., Tetiwar, G., Tuerah, A., Pangemanan, T., Mangobi, J., & Maukar, M. (1). PREDIKSI JUMLAH MAHASISWA BARU FMIPA-K UNIMA MENGGUNAKAN MODEL REGRESI NON-LINEAR. SOSCIED, 8(2), 434-441. https://doi.org/10.32531/jsoscied.v8i2.970
Section
Articles

References

Handoko, W. (2019). Prediksi Jumlah Penerimaan Mahasiswa Baru Dengan Metode Single Exponential Smoothing (Studi Kasus: Amik Royal Kisaran). JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 5(2), 125–132.

Mawardi, L., Alfaruq, U., & Triyono, G. (2024). Prediksi Jumlah Penerimaan Mahasiswa Baru Dengan Metode Linear Regression dan Exponential Smoothing. The Indonesian Journal of Computer Science, 13(1).

Muhadzdzab, H., Asfi, M., & Putri, T. E. (2020). Sistem Prediksi untuk Menentukan Jumlah Pendaftaran Mahasiswa Baru pada Unversitas Catur Insan Cendekia Menggunakan Metode Least Square. Jurnal Informatika Universitas Pamulang, 5(3), 350–355.

Almumtazah, N., Azizah, N., Putri, Y. L., & Novitasari, D. C. R. (2021). Prediksi jumlah mahasiswa baru menggunakan metode regresi linier sederhana. Jurnal Ilmiah Matematika Dan Terapan, 18(1), 31–40.

Novita, D. (2018). Strategi Pengembangan Program Studi Dalam Meningkatkan Perolehan Jumlah Mahasiswa Pada Perguruan Tinggi Swasta. Jurnal Manajemen KINERJA (Ejournal), 4(1), 30–45.

Windari, A., & Murniati, E. (2020). Prediksi Jumlah Calon Mahasiswa Baru Tahun 2018-2022 di Poltekkes Kemenkes Semarang Forecasting the Number of New Students in Poltekkes Kemenkes Semarang in 2018-2022. Jurnal Rekam Medis Dan Informasi Kesehatan, 3(1). Universitas Negeri Manado

Nadia, F.M. (2025). FORECASTING JUMLAH MAHASISWA BARU FMIPAK UNIMA.

Frank R. Giordano, W. P. F. S. B. H. (2013). MATHEMATICAL MODELING.

Eniyati, S., Santi, R. C. N., & Arianto, T. (2020). Penggunaan metode lagrange dalam peramalan jumlah mahasiswa baru.
Abstract viewed = 0 times
PDF downloaded = 0 times

Most read articles by the same author(s)